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Abstract 

 
 The authors, as part of their work in human 
centered motion cueing algorithms, conducted research 
in the area of mathematical modeling of the otolith 
organs, the sensors of specific force. The purpose of 
this study was to develop a model that is consistent with 
both experimental and theoretical analyses that can be 
readily implemented into a motion cueing algorithm. 

   
 The authors reviewed several existing models that 
characterize the specific force response dynamics.  
Experimental research on the ocular torsion response of 
human subjects8 resulted in a second-order model with 
a first-order lead component, with a short time constant 
of 0.66 seconds. From this model and physiological 
knowledge, a first-order lead-lag model of the otolith 
afferent dynamics was estimated2.  A second-order 
lumped parameter model for the otolith displacement as 
a function of the specific force stimulus was derived11, 
revealing a short time constant of 0.0002 seconds.  
Physiological experiments measuring the afferent 
response6 resulted in an otolith mechanics time constant 
of 0.016 seconds.  Based upon these results found in the 
literature, the authors synthesized a new otolith model. 

  
 The physiological experiments also resulted in 
models for both regular and irregular units containing a 
fractional exponent term in the transfer function. The 
authors derived time responses for these models using 
fractional calculus with a series approximation.  The 
responses from these models are compared to the 
response obtained from the proposed model.  This 
comparison illustrates that the proposed model is a 
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reasonable approximation to the more complex 
physiological models.  
  

Introduction 
 
 The otolith organs are located in the inner ear and 
provide linear motion sensation in humans and 
mammals.  These organs are responsive to specific 
force, the gravitoinertial reaction force per unit mass, 
which is defined to be f g a= − xx x ,1,2 where gx  is the 
local gravitational force vector, and ax  is the 
acceleration of the head with respect to a body-fixed 
reference frame.  Therefore, the otoliths respond to both 
linear acceleration of the head and tilting of the head 
with respect to the gravity vector.  However, the 
otoliths cannot discriminate between acceleration and 
tilt, requiring additional sensory information to resolve 
this ambiguity.  There are two otolith organs, the utricle 
and saccule, in each inner ear.  The utricle primarily 
senses motion in the longitudinal and lateral planes, 
while the saccule primarily senses motion in the vertical 
plane. 
 
 The orientation of the otolith organs with respect to 
a body-fixed reference frame located on the head is 
shown in Figure 1.  The otolith reference frame is fixed 
to the head; thus motion in this frame is relative to the 
head.  The x-z plane of the otolith reference frame is 
tilted upward from the x-axis by about 20 degrees.3 The 
utricle is oriented along the x-axis and the saccule is 
oriented along the z-axis in the otolith reference frame. 
 
  
   

 
 
Figure 1. Orientation of the Otolith Organs and Body-
Fixed Reference Frame. 
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Physiological Description of the Otoliths 
 
 The otolith organs consist of a two-layer structure 
known as the otolithic membrane that is attached to a 
base containing sensory cells.  The otolithic membrane 
is composed of an upper layer, the otoconial layer, and 
a lower layer, the gelatinous layer. A fluid known as 
endolymph is in contact with the upper surface of the 
otoconial layer.  The otoconial layer consists of calcium 
carbonate crystals embedded in a gelatinous material 
that rests on a less dense and extremely deformable 
gelatinous layer.  This gelatinous layer is in turn 
attached to the sensory cell base known as the macula 
that is incorporated into the membranous tissue walls of 
the inner ear.  The macula is rigidly attached to the 
skull and therefore moves with the head. 
 
 There are two types of sensory cells located in the 
macula.  The Type I cells are enclosed in a nerve 
chalice and are innervated by nerve fibers with a large 
diameter.  The Type II cells are cylindrical and are 
innervated by fibers with a small diameter.  Fernandez 
and Goldberg4 report that cells in the outer (peripheral) 
otolith region are primarily Type II cells and cells in the 
central (striolar) region are primarily Type I cells.  Both 
types of cells have a series of small hairs that penetrate 
the lower portion of the gelatinous layer.  Each hair cell 
has about 70 stereocilia and one kinocilium with the 
stereocilia graded in length toward the kinocilium. 
 
 The resulting displacement of the otolithic 
membrane due to forward linear acceleration is 
illustrated in Figure 2.  The arrows in the figure show 
the direction of the specific force acting upon the head.  
With a forward acceleration or backward tilting of the 
head the denser otoliths tend to lag behind the macula, 
with the relative motion resulting in deforming the 
gelatinous and otoconial layers in shear.  When the 
shear deformation is in the direction of the kinocilium, 
the cell will be excited, whereas when the deformation 
is in the opposite direction, the cell will be inhibited.  
The directions of the maximum excitation and 
inhibition of a hair cell are defined by its polarization 
axis.  In each macula, the striola separates oppositely 
polarized regions.  For each position due to 
translational movement, some cells will be maximally 
excited, while others will be maximally inhibited. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Displacement of the Otolithic Membrane due 
to a Forward Acceleration5. 
 
 The axes of maximum and minimum response of a 
given afferent neuron are defined by the corresponding 
polarization axis of the hair cells that it innervates.  The 
linear polarization of an afferent neuron strongly 
suggests that the hair cells that the neuron innervates 
have polarization axes that are oriented in the same 
direction.3,4 The response of a neuron is the afferent 
firing rate (AFR), measured in impulses per second 
(IPS). 
 
 Fernandez and Goldberg6 identified two types of 
neurons that are characterized by their variance or 
regularity of discharge, hereafter referred to as regular 
and irregular units.  From a sample population of units, 
they identified a ratio of regular to irregular units to be 
approximately three to one. 
 
Physiologically Based Models of Perceived Response 
 
 Zacharias7 reported that Meiry (1965) first 
investigated subjective responses to linear motion by 
using a cart to produce longitudinal sinusoidal motion. 
By measuring the subjective indication of direction, he 
obtained a transfer function relating perceived velocity 
v̂  to actual velocity v: 
 

  
( )
( ) ( )( )

1

1 2

ˆ

1 1

v s K s

v s s s

τ
τ τ

=
+ +

              (1) 

 
Where the long time constant τ1 and short time constant 
τ2 are 10 and 0.66 seconds respectively, and the gain K 
is undetermined since amplitude measurements were 
not taken. Zacharias7 then noted that Peters suggested 
the subjective response measured by Meiry was 
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perceived acceleration and not perceived velocity, since 
in response to an acceleration step the model predicted 
a perceived response that decays to zero with a time 
constant of 10 seconds. 
 
 Young and Meiry8 noted that the model proposed 
by Meiry correctly predicted the phase of perceived 
velocity for lateral oscillation and time to detect motion 
under constant acceleration, but failed to predict the 
otoliths’ response to sustained tilt angle as indicated by 
behavioral and physiological data.  They noted that the 
model agreed with dynamic counter-rolling data (of the 
eye) at high frequencies, but experimental counter-
rolling at zero frequency showed a static component of 
otolith output with no phase lag (the model assumed no 
static output and at zero frequency approached 90 
degrees of lead).  They proposed the following revised 
model of specific force sensation: 
 

  
( )
( )

( )
( )( )

ˆ 1.5 0.076

0.19 1.5

f s s

f s s s

+
=

+ +
              (2) 

 
which, when rearranged in terms of the time constants, 
yields  
 

  
( )
( )

( )
( )( )

ˆ 0.4 13.2 1

5.33 1 0.66 1

f s s

f s s s

+
=

+ +
              (3) 

 
With a smaller long time constant (5.33 seconds) and an 
additional lead term, they modeled both perceived tilt 
and acceleration in response to acceleration input.  
They noted that the model acts as a velocity transducer 
over the frequency range of 0.19 to 1.5 rad/s, with the 
transfer function from specific force to perceived tilt or 
lateral acceleration having a static sensitivity of 0.4.  
 

Analytical Model of Otolith Dynamics 
 
 Zacharias7 noted that a mass-spring-dashpot model 
of otolith motion could be used to represent the two lag 
time constants, similar to the torsion-pendulum model 
for the semicircular canals.  Ormsby2 first developed 
this model, and Grant, Best, et al9,10,11,12 later refined the 
model as part of their theoretical analysis of the 
otolithic membrane. A lumped parameter model is 
constructed by considering the forces on the otoconial 
layer.  The differential equation for this model in the x-
direction (in the otolith reference frame) is given as11  
 

 ( )o x df x x o Bbx kx m g m a g m a− − + + − =&         (4)

               
where 
 
mo   =   Mass of the displaced otoconial layer 
mdf  =   Mass of the displaced fluid (endolymph) 
gx    =   Component of the gravity vector  
b     =   Viscous damping on the otoconial layer  
k     =   Stiffness of the gelatinous layer 
x     =   Displacement of the otoconial layer with respect 
 to the head   
ax    =   Acceleration of the head with respect to a body- 
            fixed reference frame 
aB   =   Acceleration of the otoconial membrane with  
   respect to a body frame 
                
 The force term of mdf (ax - gx) is the buoyant force 
of the endolymph acting on the otoconial layer, which 
was neglected by Ormsby2 in his analysis.  
 
 By conservation of volume, the mass of the 
displaced fluid can be expressed as ( )df e o om mρ ρ= , 

where ρe is the density of the endolymph and ρo is the 
density of the otoconial membrane.  Substituting this 
term into Eqn. (4), and noting that B xa a x= + &&, results 
in  

 ( )1 e
x x

o o o

b k
x x x g a

m m

ρ
ρ

+ + = − −
 
 
 

&& &           (5)   

              
 Note that the stimulus term gx – ax is the specific 
force component fx.  The term ( )1 e oρ ρ−  establishes 
the system sensitivity or gain to the stimulus terms.  For 
ρo greater than ρe, a positive gx or a negative ax will 
produce a positive displacement of the otoconial layer.  
Eqn. (5) can then be written in transfer function form as 
 

           
2

( ) 1
1

( )
e

o

o o

x s

B Kf s
s s

m m

ρ
ρ

= −

+ +

 
   

 
 

 (6) 

 
As observed by Young and Meiry8, the system response 
is overdamped.  For an overdamped system, Eqn. (6) 
can be rewritten in terms of the long and short time 
constants as 
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( )( )

1 2

1 2

( )
1

( ) 1 1
e

o

x s

f s s s

ρ τ τ
ρ τ τ

= −
+ +

 
 
 

        (7)     

 
where for the otoliths, 1 2τ τ? , and therefore the two 
time constants can be related to the lumped parameters 
as 1 om kτ =   and 2 om bτ = .   
 
 In determining the value of the short time constant 
τ2, Grant and Best11 examined the maximum 
displacement of the otoconial layer in response to a step 
change in linear velocity.  The acceleration for a linear 
velocity step U is ( )xa U tδ= − , with gx = 0, where 

( )tδ  is the unit impulse function.  The transient 
response to Eqn. (7) is then 
 

 2
1 2( ) 1 ( )o

e

t t
x t U e eτ τρ

τ
ρ

− −

= − −
 
 
 

 (8) 

 
By assuming that the short exponential term in Eqn. (8) 
has reached zero and the long exponential term remains 
close to unity, the maximum displacement of the 
otoconial layer xmax can be approximated as 
 

          max 21 e

o

x U
ρ

τ
ρ

≅ −
 
 
 

 (9) 

 
 The theoretical continuum mechanics analysis 
performed by Grant and Best first indicated that this 
short time constant τ2 is 0.002 seconds or less10.  They 
later demonstrate11 that this value turns out to be too 
large when reasonable values of the maximum otolith 
displacement are considered.  For ρo = 2.0 and U = 25 
cm/sec (a reasonable value for normal head velocity), 
Eqn. (9) becomes xmax = 12.5τ2. For τ2 = 0.002 sec, the 
maximum displacement of the otolithic membrane 
results in xmax = 250 µm.  It is assumed that for shear 
deformation the maximum displacement should not 
exceed the thickness of the otoconial layer (25 µm), 
indicating the short time constant should be one order 
of magnitude smaller, i.e. τ2 = 0.0002 s.  This indicates 
that more damping is needed in the lumped parameter 
model.  Grant and Best later show that additional 
damping can be introduced by inclusion of a 
viscoelastic gelatinous layer in the continuum 
mechanics model12.  
 

Estimated Model of Afferent Dynamics 
 
 Ormsby2 neglected the short time constant τ2 in 
Eqn. (7) and after rearranging terms, approximated the 
otolith mechanical dynamics by 
 

           ( )

( )

x s A

f s s A
=

+
 (10) 

 
and then proposed a model for the response of the 
otolith afferent dynamics: 
 

  ( )( )

( )

Bs B C AAFR s

f s s A

+ +
=

+
 (11) 

 
This model assumes that higher centers process the 
afferent response optimally to estimate the perceived 
specific force f̂  as shown below. 
  

 The steady-state optimal processor H(s) is then 
determined by solving the associated Wiener-Hopf 
equation, yielding a solution of the form 
 

       
( )( )

( )
s A

H s M
s F s G

+
=

+ +
 (12) 

 
where F, G, and M are non-linear functions of a set of 
independent variables that include the parameters A, B, 
and C in Eqn. (11). With the form of H(s) determined, it 
can then be cascaded with the otolith and afferent 
dynamics to estimate the perceptual response:  
  

          

( )

( )( )
ˆ

B C A
s

f BBM
f s F s G

+
+

=
+ +

 
 
   (13) 

 
which is equivalent to Eqn. (2).   

( )Bs B C A

s A

+ +

+
( )H s

( )AFR s ˆ ( )f s( )f s

Processing by
Higher Centers

Combined 
Mechanical and 
Afferent Otolith 

Dynamics
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 Ormsby2 noted that Fernandez, Goldberg, and 
Abend found an average steady-state change in afferent 
firing rate from the utricle due to a 1 g step to be 45 
impulses per second (ips), resulting in the condition that 
B + C = 45.  Setting Eqn. (13) equal to Eqn. (2) and 
including this constraint results in the following model 
for the afferent dynamic response: 
 

       ( ) 0.1
90

( ) 0.2

AFR s s

f s s

+
=

+
 (14) 

 
This transfer function, when rearranged in terms of its 
time constants, becomes 
 

        ( ) 10 1
45

( ) 5 1

AFR s s

f s s

+
=

+
            (15) 

 
Ormsby2 noted the following about the model:  
 
 “The approach taken here can yield a model which 
accounts reasonably well for the available subjective 
data, the known physiological structure of the sensor 
and makes reasonable predictions concerning the 
afferent processes and the associated central 
processing.” 
 

Experimental Models of Afferent Dynamics 
 
 Fernandez and Goldberg4 studied the discharge of 
peripheral otolith neurons in response to sinusoidal 
force variations in the squirrel monkey.  Both regular 
and irregular units were measured, with a frequency 
analysis performed for each type of unit. The gain 
curves for the regular units were relatively flat, with a 
small phase lead at low frequencies and a larger phase 
lag at high frequencies.  The irregular units showed a 
larger gain enhancement and phase lead at high 
frequencies.  On average, there is an increase by a 
factor of 18 in gain enhancement in irregular units but 
only an increase of a factor of 2 for regular units.  In 
both cases, a first-order lead operator cannot represent 
the resulting gain enhancement and phase lead.  The 
average static sensitivity for both types of units is 
nearly identical, with reduced gains for the inhibitory 
response. 
 
The frequency responses of regular and irregular units 
result in a transfer function of the form4 

 

 

( )

( ) ( )
( )

11

1 1

( )
( )

k
A A

S
A M

S A
M

k sk s
G

s s

H s
G H s

H s

AFR s
f s

ν
ν ν

ν

ττ
τ τ

++
=

+ +

=

           

(16) 
 
 In Eqn. (16), the term Hv is a velocity-sensitive 
operator with a fractional exponent (kv < 1) and 
provides most of the gain enhancement and phase lead 
found in both regular and irregular units.  The value of 
kv reflects the effectiveness of the lead operator and is 
closely related to the slope of the gain curve.  The term 
HA is an adaptation operator that contributes to low 
frequency phase leads and gain increases from static or 
zero frequency to 0.006 Hz.  The term HM is a first- 
order lag operator that Fernandez and Goldberg4 note 
may reflect the mechanics of otolith motion.  This lag 
term accounts for the high frequency phase lags 
observed in regular units and for high frequency phase 
leads in irregular units being smaller than would be 
predicted solely by a fractional lead operator. The term 
GS defines the static sensitivity in terms of afferent 
firing rate per unit of acceleration, i.e. ips/g. 
 
 The transfer function was estimated from a 
least square computer fit with τν varied from 0 to 320 
seconds in seven steps, with the remaining parameters 
estimated.  The values for these parameters were 
obtained for τν  = 40 seconds (almost equal results were 
obtained for all values of τν).  The median parameters 
for both regular and irregular units for the excitatory 
response are given in Table 1. 
 
Table 1. Median Parameters for Regular and Irregular 
Units4. 
 
Parameter Regular Unit Irregular Unit 
kv 0.188 0.440 
kA 1.12 1.90 
τA 69 sec 101 sec 
τM 16 msec 9 msec 
GDC 25.6 ips / g 20.5 ips / g 
 

Proposed Afferent Dynamics Model 
 
 Note that the gain terms for the Fernandez-
Goldberg model from Table 1 are about one half that of 
the gain value used by Ormsby2 to develop his model. 
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Due to the adaptation mechanism in the Fernandez-
Goldberg models, these gains will require a long 
duration step input to be realized in steady state. 
Hosman13 suggested a gain term of less magnitude than 
that used by Ormsby (GDC = 33.3) that may provide an 
improved approximation to the Fernandez-Goldberg 
responses.   
 
 By using the long and lead time constants reported 
by Ormsby2 in Eqn. (15), selecting the short time 
constant from the Fernandez-Goldberg4 model, and 
including the gain suggested by Hosman, the following 
transfer function results for the afferent otolith 
dynamics: 
 

 ( )
( )( )

10 1( )
33.3

( ) 5 1 0.016 1

sAFR s

f s s s

+
=

+ +
 (17) 

   
 The frequency response of the proposed model in 
Eqn. (17) is compared to the frequency response of the 
Young-Meiry model of Eqn. (3) as shown in Figure 4.  
For comparison in Figure 4, both models use the gain K 
= 0.4 from the Young-Meiry model.  Note that the gain 
and phase lag for the Young-Meiry model occurs at a 
much lower frequency as compared to the proposed 
model.  This is due to the magnitude of the short time 
constant τ2 for the Young-Meiry model being an order 
of magnitude larger than the value used in the proposed 
model.  In the range of normal head movements from 
0.1 to 1.0 Hz noted by Young1, the gain for the 
proposed model remains constant with the phase close 
to zero degrees.  In this frequency range the otolith 
functions as a specific force transducer. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.  Frequency Response of Proposed and 
Young-Meiry Sensation Models. 

Fractional Exponent Derivation 
 
 Because of the fractional exponent in the transfer 
function of Eqn. (16), an elementary solution to its 
response cannot be readily obtained.  However, an 
approximate solution to the response can be derived 
through the application of fractional calculus14. 
 
 By first substituting the regular unit parameters 
into Eqn. (16) and then implementing partial fraction 
expansion, Eqn. (16) becomes 
 

 

( )
0.188

0.188

1792.056
674.058

62.5 62.5

0.044538
0.016752

0.0145 0.0145

s
H s

s s

s

s s

= +
+ +

− −
+ +

    (18) 

 
 In Eqn. (18) there are two groups of two transfer 
functions.  Each group is related to either the otolith 
mechanics (“fast”) time constant τM or the adaptation 
(“slow”) time constant τa, with one of the two transfer 
functions including an exponent that represents a 
fractional derivative.  For the first group, the solution to 
the term without the fractional exponent can be easily 
obtained by taking the inverse Laplace transformation 
of the response: 
 

  1 62.51

62.5
tL e

s
− −=

+

 
 
 

             (19) 

 
To derive a solution to the fractional exponent term, 
The inverse Laplace transformation is first obtained by 
applying fractional calculus:14   
  

  ( )1 ,t
s

L E a
s a

ν

ν
−

− =
−

 
 
 

             (20) 

 
where a = -62.5, ν = -0.188, and the term 

( ) ( )*, ,at
tE a t e atνν γ ν= , with γ* being the 

incomplete gamma function14, a transcendental function 
that can be expressed as 
 

  ( ) ( )
( )0

* ,
1k

k
at at

at t
k

γ ν
ν

∞

=

−=
Γ + +

∑             (21) 
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Substituting Eqn. (21) into Eqn. (20) will result in 
 

( ) ( )
( )

1

0

,
1k

k

t
at

L E a t
k

s
s a

ν
νν

ν

∞
−

=

−

= =
Γ + +

 
 − 

∑  

      
                           (22)    

 
Eqn. (22) is an infinite series.  For ν  = 0, Eqn. (22) will 
reduce to the Taylor series expansion of the exponential 
function: 
 

  ( ) ( )
( )0

0,
1k

k
at

t
at

E a e
k

∞

=

= =
Γ +

∑              (23) 

 
 When ν is not equal to zero, ( ),tE aν  is a 
transcendental function that cannot be expressed by an 
elementary function, i.e. it can only be approximated.  
However, Eqn. (22) is not suitable for numeric 
computation because this series converges very slowly, 
especially when the magnitude of a is large (e.g. -62.5).  
The following derivation will result in an integral 
expression of the infinite series that can be adopted to 
compute ( ),tE aν . If we let ( ) ( ),tf t E aν= , then 
 

 ( ) ( )
( )0

1

k

kat
f t t

k
ν

ν

∞

=

−′ =
Γ +

∑  (24) 

 
where ( )f t satisfies the first-order ordinary differential 
equation 
 
  ( ) ( ) ( )1f t a f t tν ν−′ − = Γ             (25) 
 
with the solution 
 

 ( ) ( )
( )

0

1

, , 1

tat au

t

e e u du
f t E a

ν

ν ν
ν

− −

= = ≥
Γ
∫

      

                                                                                   (26) 
 
 Note that in Eqn. (26) the integral does not exist 
when ν - 1 is less than 0.  To overcome this problem, 
we use the recursion formula14 
 

             (27) 
    

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

1 2

1 2
1

0

, 1,
1

2,
1 2 2

1 2 2

t t

at

t

at t au

tE a aE a

t at a e E a

t at a e e u du

ν

ν ν

ν ν
ν

ν ν
ν

ν
ν ν ν

ν ν ν

+

+
− +

= + +
Γ +

= + + +
Γ + Γ + Γ +

= + +
Γ + Γ + Γ + ∫

 

  
 Note that the integral in Eqn. (27) now exists since 
ν  + 1 is greater than 0.  Eqn. (27) can now be used to 
compute the responses of the two fractional exponent 
transfer functions given in Eqn. (18).  For each of these 
transfer functions, three terms are computed.  The first 
two terms are analytical functions, and the third 
includes an integral that requires an approximate 
solution.  By using a series approximation, the integral 
I(t) in Eqn. (27) can be evaluated as 
 

( ) ( )
( )

1

10
0

(1 )2 11
N

j N
j

jat zatI t t e C e z dz O
at

ν
+

=

−+ −
   = − +    −   
∑ ∫

 
                 (28) 
 
where the constant Cj is equal to 1 for j = 0, ( 1)ν + for 

j = 1, and ( 1) 2!ν ν+  for j = 2.  By taking the inverse 
Laplace transformation of Eqn. (18) and applying Eqns. 
(27) and (28) to the transfer functions with fractional 
exponents results in the impulse response h(t): 
 

 ( )
( )

62.5 0.0145( ) 1792.056 0.044538
674.058 0.188, 62.5

0.016752 0.188, 0.0145

t t

t

t

h t e e
E

E

− −= −
+ − −

− − −

             (29) 

 
 The response to a step input will now be 
considered.  Given a system with the initial conditions 

0x =  and 0x =&  when t = 0, and an arbitrary input 
u(t), we look for a solution in the form 
 

  ( ) ( ) ( )
0

,
t

x t h x u dτ τ τ= ∫             (30) 

 
where ( ),h x τ  is Green’s function, i.e. the system 
response to an impulse input. If we consider the 
response to a unit step, i.e. ( ) 1u τ =  for t > 0, the 
response for a term without the fractional exponent is  
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  ( )
0

1
1

t a ate d e
a

τ τ = −∫               (31) 

 
while the response for a term with the fractional 
exponent from Eqn. (29) is given by Miller and Ross14 
as 
 

  ( ) ( )
0

, 1,
t

tE a d E aτ ν τ ν= +∫             (32) 

 
and applying the recursion formula in Eqn. (27) gives  
 

 ( ) ( )
( )

1
1, ,

1t t
t

E a E a
a

ν

ν ν
ν

+ = −
Γ +

 
 
 

       (33) 

 
Applying Eqns. (31) and (33) to the impulse response 
given in Eqn. (29) and combining terms results in the 
regular unit response to a unit step: 
 

( )
( )

( )

( )

62.5 0.01449325.601 28.673 3.073
10.786 0.188, 62.5

1.156 0.188, 0.014493

9.629
1

t t

t

t

x t e e
E

E
tν
ν

− −= − +
− − −

+ − −

+
Γ +

                                                                                                  

                 (34) 
 
Similarly, the unit step response for the irregular unit 
can be derived: 
 

( )
( )
( )

( )

111.1111 0.00990120.308 35.588 18.280
86.063 0.44, 111.1111

40.769 0.44, 0.009901

45.294
1

t t

t

t

x t e e
E
E

tν
ν

− −= − +
− − −

+ − −

+
Γ +

 

                                                                             (35) 
 

Comparisons of Model Responses 
 
 The response to a step input of 1 g (9.81 m/s2) will 
now be examined for both the regular and irregular 
units.  A series approximation of N = 2 will be used, 
and the responses will be evaluated at intervals of 0.025 
seconds.  The effect of the two fractional exponent lead 
terms from the otolith mechanics (“fast”) and 
adaptation (“slow”) time constants will be illustrated.  
Figure 5 shows the response for the regular units for 1 
second.  Note that the rise time is faster and the steady 

state response significantly increases due to the fast 
lead term, with a smaller but additional effect due to the 
slow lead term. 
 
 Figure 6 shows the response for the irregular units 
for 1 second.  Note that both lead terms have a more 
significant effect on the response as compared to their 
effect on regular unit response.  This is primarily due to 
the larger fractional exponent kv, and also due to the 
larger time constant τa and coefficient ka in the 
adaptation operator.  The rise time is significantly 
faster, with the response rapidly increasing to a peak 
overshoot over five times the value without the fast lead 
term.  The inclusion of the fast lead term also results in 
the steady state response being nearly doubled.  The 
addition of the slow lead term results in the overshoot 
increasing by an additional 50 per cent with additional 
steady state response. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
Figure 5. Regular Unit Response to Step Input. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.  Irregular Unit Response to Step Input. 
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 Figure 7 compares the step response for both the 
regular and irregular units (including both the fast and 
slow lead terms) to the response for the proposed model 
given in Eqn. (17).  Note that the rise time for the 
proposed model is faster than the regular unit, but 
slower than the irregular unit.  There is no large 
overshoot as observed with the irregular unit response.  
Figure 8 compares the responses for 30 seconds.  Note 
that the steady state response for the proposed model is 
less than the irregular unit response but greater than the 
regular unit response, and approaches the regular unit 
response for the given time duration.  Both the regular 
and irregular unit response will slowly approach their 
respective gain values, and beyond about 80 seconds 
the irregular unit response will decrease below that of 
the proposed model. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. Proposed Model Response to Step Input for 1 
second. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8.  Proposed Model Response to Step Input for 
30 seconds. 

Physiological Interpretation 
 
 Modern theories of the operation of the otolith 
receptors are based on the assumption that the neural 
impulses are generated by the deflection of hairs in the 
sensory cells as a result of the otolith displacement.  
Specific force, produced by either linear acceleration or 
tilt, is first transformed into electrical impulses by the 
otolith-endolymph system.  Then the otolith deflection 
is further transformed into electrical impulses by the 
mechano-neural transduction system consisting of 
sensory hair cells, afferent nerves, and efferent nerves. 
 
 Many researchers have shown that the otolith-
endolymph system could be represented by an 
overdamped mass-spring-damper system. Grant and 
Best11 reported that the magnitude of the long time 
constant τ1 is considered correct by most investigators 
because the overall system (otolith organ, nervous 
transmission, central nervous system processing, and 
eye motion dynamics) could easily follow such a slow 
system. The value Grant and Best11 obtain for the short 
time constant τ2 is a three order of magnitude decrease 
in time constant as compared to the value obtained from 
the ocular torsion responses measured by Young and 
Meiry8. This value is also two orders of magnitude less 
than the value of τM Fernandez and Goldberg4 attribute 
to the otolith dynamics. The dynamic response 
increases as the system transducer (otolith) is 
approached, thus allowing for dynamic losses in 
nervous system transmission and eye dynamics. 
 
 Young and Meiry8 first noted that the origin of the 
lead term could be neurological, either in central 
processing of the otolith displacement signals or 
through the presence of two types of hair cells in the 
macula.  One type of hair cell would respond to 
displacement and the other would respond to the rate of 
change of otolith displacement.  These hair cells could 
produce the lead term if they were of the slowly 
adapting type postulated by several researchers.  
Fernandez and Goldberg4 later show that the degree of 
sensitivity to the otolith velocity can be represented by 
different fractional exponents in the lead operator, i.e. 
irregular units are more velocity sensitive than regular 
units.  They note that this difference in sensitivity may 
be due to discrepancies that are more noticeable with 
irregular units. 
 
 Fernandez and Goldberg4 suggest that the 
difference between the expected otolith displacement 
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and afferent firing rate for both regular and irregular 
units may be attributed to the mechanical linkages 
between the sensory hair bundles and the gelatinous 
layer.  They report that these sensory hair bundles are 
not rigidly embedded in the membrane, but are 
enclosed in a fluid-filled meshwork between the 
membrane and the sensory epithelium.  Motion could 
be transferred to the hairs either by directly contacting 
the meshwork or indirect contact by viscous coupling 
with the fluid.  They also note that the irregular units 
correspond to thick afferents that stimulate the Type I 
hair cells in the striola.  Grant and Best11 also suggest 
that for large tilt the gelatinous layer has a nonlinear 
stiffness that could also contribute to these differences 
as well. 
  
 Fernandez and Goldberg4 suggest that later stages 
of the transduction process may also influence the 
afferent dynamics, in particular adaptation, noting the 
following: 
 
 “Lowenstein found, in the ray, that afferents can 
show adaptation when galvanic currents are applied.  
We have made similar observations in the squirrel 
monkey (unpublished observations) and have noted a 
correlation between the degree of adaptation shown by 
a particular afferent in its response to natural and 
electrical stimulation”   
 
 They note that these results show that a detailed 
comparison of the response to galvanic and natural 
stimulation may help in assessing the contributions 
made by the various transduction stages in the filtering 
process between the motion of the otolith and the 
discharge of the afferent. 
 

Conclusions 
 

 A mathematical model of the otolith organs based 
on both analytical modeling and physiological 
experiments is proposed.  This model consists of a 
second-order mass-spring-dashpot operator cascaded 
with a first-order lead operator.  The mass-spring-
dashpot operator represents the mechanics of otolith 
motion.  The lead operator arises from the mechano-
neural transduction system that in turn generates the 
afferent response. 
 
 The physiological experiments resulted in transfer 
functions for both regular and irregular units with a 
fractional exponent in the lead operator.  This term 

reflects the sensitivity of hair cells to the rate of change 
of otolith displacement.  By applying fractional 
calculus, transient responses to impulse and step inputs 
have been derived for both regular and irregular unit 
models.  The solutions to these responses are both 
mathematically and computationally intensive, 
requiring several terms along with a series 
approximation of an integral for each of two lead 
components to compute the response at each time step. 
 
 Additional research in this area is needed to yield 
responses to more arbitrary inputs in addition to the 
impulse and step inputs.  It is also suggested that a 
model could be developed that incorporates the 
dynamics of the fractional exponent lead operator from 
both the regular and irregular unit models.  Such a 
model must be easy to implement in state space in a 
motion cueing algorithm and be computationally 
efficient so that the afferent response can be computed 
in real time. 
 
 Comparison of the transient response of the 
proposed model with the responses of the regular and 
irregular units clearly shows that a less complex model 
can generate a response that is a reasonable 
approximation between the regular and irregular units.  
This model has the same structure as the Meiry-Young 
model that is currently used in the development of the 
optimal algorithm15, and can easily replace the former 
model.  This revised otolith model will also be an 
integral part of a proposed motion cueing algorithm that 
incorporates human perception of motion into a non-
linear optimal control structure. 
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